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Power Side-Channel

• Implementation-based medium that 

leaks information

• Electromagnetic, power, timing, etc.

• Broad and impactful information

• Can be used for attack and defense

• Well suited for defense

• Out-of-band implementation

• No HW/SW overhead

2

Power-based detector [1]

[1] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems, Wei et al. HOST’19
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Power-Based Detection Systematization

• Many prior works

• Variety of approaches

• Difficult for new researcher or 

practitioner to navigate space
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Power-Based Detection Systematization

• Many prior works

• Variety of approaches

• Difficult for new researcher or 

practitioner to navigate space

• Orthogonal (?) variables

• Target systems

• ML detection methods

• Threat model
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Outline

✓ Intro

• SoK Taxonomies

• Detector context

• ML pipelines

• Attacks and datasets

• Discussion

• Research gaps & takeaways

• Summary, Conclusions and Future Work

9



Detector Context
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Detector Context Takeaways

• For multi-core systems, must consider all states

• Exponential number of states

• Malware can execute in parallel to benign tasks

• Must distinguish all benign from all infected states

• Benign state: only benign tasks executing

• Infected state: at least one malware task
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Research Gap: Lack of evaluation on parallel task sets



Experimental Setup
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Target Device Portwell PCOM-C700 Type VII carrier board

Portwell PCOM-B700G processor module

8-core Intel Xeon D-1539 embedded class processor

Power Sampling Spliced 12V CPU power rail, sampled at 2KHz

Adafruit INA169 analog current sensor

Detector Deployed on Raspberry Pi4

Python implementation achieves 27 inferences per second
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Features For regression-based detectors, input window was size 1000 and prediction window 

3

For other ML formulations, each sliding window was transformed into a feature 

vector

Feature vector consisted of statistical, and bag-of-words features

Prior Works Replicated representative works for various ML formulations

Non-ensemble formulations include: one-class classification, binary classification, 

multiclass classification, ensemble of one-class classifiers, regression, statistical 

tests

Mix of non-deep and deep methods evaluated

[Bridges’18, Caviglione‘15, Dixon’14, Jiminez’19, Liu’09, Luckett’18, Wang’18, 

Wei’19]

Benchmarks Benign applications representing drone tasks; SHA-3, face detection, 

autonomous drone path-finding

3 Microarchitectural attacks; Meltdown, Spectre, and L1 Cache covert-channel



Detector Context Evaluation

• Characterize operating range

• 3 applications 

• 8 benign states

• 64 comparisons

• Prior work underperforms

• Perform poorly in parallel settings

• Suffer even in single-core context
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Detector ML Pipelines
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Power 

Samples

Feature 

Extraction
ML Model

• Time-domain statistical features; mean, variance, skewness, 

kurtosis, interquartile range

• Frequency-domain; zero-crossing rate, energy, spectral 

centroid

• DWT

• Bag-of-words

• One-class classification

• Zero days

• Ensemble?

• Binary classification

• Multiclass classification

• Train on malware?C
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Detector ML Pipelines
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Power 

Samples

Feature 

Extraction
ML Model

• Regression

• Signature matching, statistical tests

• Comparison of known patterns or signatures

• State-transition

• Probabilistic state-machine is fitted to benign behavior

• Likelihood of state-transition

• Raw timeseries

• Neyman-Pearson correlation

• Compare spectrograms

• DWT

• Time-domain statistical features; mean, variance, skewness, 

kurtosis, interquartile range

• Frequency-domain; zero-crossing rate, energy, spectral 

centroid

• DWT

• Bag-of-words

• One-class classification

• Zero days

• Ensemble?

• Binary classification

• Multiclass classification

• Train on malware?C
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Detector ML Pipelines Takeaways
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• Train on malware with assumption that it is representative

• Binary or multi-class classification

• Regression error as proxy for maliciousness

• Time series forecasting

• Classification confidence as proxy for maliciousness

• Multi-class classification 



Detector ML Pipelines Takeaways
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Research Gap: Inappropriate utilization of ML formulations

• Train on malware with assumption that it is representative

• Binary or multi-class classification

• Regression error as proxy for maliciousness

• Time series forecasting

• Classification confidence as proxy for maliciousness

• Multi-class classification 



Proposed State-Based One-Class Ensemble

• State awareness

• Any unique combination of executing tasks presents an operating state

• One-class classifier for each state

24



Proposed State-Based One-Class Ensemble

• Scaling to parallel task sets

• With more tasks, add more one-class pipelines

• Combine one-class detection results (max/or)
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Detector ML Pipeline Evaluation

• Ensemble outperforms prior work

• Including prior single-task ensembles

• Ensemble still has limitations

• NOP insert, low-power, power-mimicry

• Noise

• Power cannot detect everything

27



Attacks and Datasets

• MITRE ATT&CK matrix

28
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Attacks and Datasets
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• Proprietary experimental setup

• Reproducibility
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Attack and Dataset Evaluation

• Evaluate against other attack stages

• Initial access, discovery, lateral movement

• Cannot expect reliable detections

• Operating range of detectors

• Need to look at worst-case

31



Attacks and Datasets Takeaways
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• Most focus on easy-to-detect stages of MITRE matrix

• Exploitation and impact

• No established public datasets

• No released power traces



Attacks and Datasets Takeaways
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Research Gap: Lack of comprehensive public datasets

https://github.com/SLAM-Lab/PMD-Dataset 

• Most focus on easy-to-detect stages of MITRE matrix

• Exploitation and impact

• No established public datasets

• No released power traces

https://github.com/SLAM-Lab/PMD-Dataset


Discussion
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• Lack of evaluation on parallel task sets

• Multi-core poses new challenges

• Must evaluate each benign and infected state

• Inappropriate utilization of ML tools

• Detection significantly hinges on formulation

• Preprocessing is crucial

• Lack of rigorous public datasets

• Understanding detector limits is more important 

than showing successes

➢ Limit number of benign tasks

➢ Worst case can be much worse 

than average

➢ Deep model is not a crutch for 

missing domain expertise

➢ Detector not tested against 

software-exploiting attacks

Deployment Suggestions



Summary, Conclusions and Future Work
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• Systemization of power side-channel based malware detection

• Detector context, ML pipelines, attacks & datasets

• Identify and address research gaps

• Multi-task multi-core evaluation

• Proposed state-based ensemble detector

• Public release of dataset

https://github.com/SLAM-Lab/PMD-Dataset 
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Summary, Conclusions and Future Work

36

• Systemization of power side-channel based malware detection

• Detector context, ML pipelines, attacks & datasets

• Identify and address research gaps

• Multi-task multi-core evaluation

• Proposed state-based ensemble detector

• Public release of dataset

• Future work

• Further characterization of operating range

• Alternative approaches for more complex detection scenarios
– Heterogeneous hardware platforms, software-based attacks, power-mimicking malware

https://github.com/SLAM-Lab/PMD-Dataset 

https://github.com/SLAM-Lab/PMD-Dataset


Questions

Thank you!

alexander.cathis@utexas.edu
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https://github.com/SLAM-Lab/PMD-Dataset 
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