SoK Paper: Power Side-Channel Malware Detection

Alexander Cathis, Ge Li, Shijia Wei, Michael Orshansky, Mohit Tiwari, Andreas Gerstlauer

Chandra Family Department of Electrical and Computer Engineering The University of Texas at Austin Austin, Texas, USA

[#] SPARK RESEARCH LAB **[#]**

Security, Privacy and Computer Architecture

The International Workshop on Hardware and Architectural Support for Security and Privacy November 2, 2024

The University of Texas at Austin Chandra Department of Electrical and Computer Engineering Cockrell School of Engineering

• Implementation-based medium that leaks information

• Electromagnetic, power, timing, etc.

Broad and impactful information

• Can be used for attack and defense

Well suited for defense

- Out-of-band implementation
- No HW/SW overhead

- Implementation-based medium that leaks information
 - Electromagnetic, power, timing, etc.
- Broad and impactful information
 - Can be used for attack and defense
- Well suited for defense
 - Out-of-band implementation
 - No HW/SW overhead

- Implementation-based medium that leaks information
 - Electromagnetic, power, timing, etc.
- Broad and impactful information
 - Can be used for attack and defense
- Well suited for defense
 - Out-of-band implementation
 - No HW/SW overhead

- Implementation-based medium that leaks information
 - Electromagnetic, power, timing, etc.
- Broad and impactful information
 - Can be used for attack and defense
- Well suited for defense
 - Out-of-band implementation
 - No HW/SW overhead

[1] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems, Wei et al. HOST'19

- Implementation-based medium that leaks information
 - Electromagnetic, power, timing, etc.
- Broad and impactful information
 - Can be used for attack and defense
- Well suited for defense
 - Out-of-band implementation
 - No HW/SW overhead

Power-based detector [1]

[1] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems, Wei et al. HOST'19

Power-Based Detection Systematization

- Many prior works
- Variety of approaches
- Difficult for new researcher or practitioner to navigate space

[1] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. Wei et al. HOST'19

[2] Wattsupdoc: Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. Clark et al . HealthTec'13

[3] Power-Based Non-Intrusive Condition Monitoring for Terminal Device in Smart Grid. Zhang et al. Sensors'20

[4] Detecting Energy-Greedy Anomalies and Mobile Malware Variants. Kim et al. Mobisys'08

[5] Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. Bridges et al. TrustCom/BigDataSE'18

Power-Based Detection Systematization

Outline

✓ Intro

- SoK Taxonomies
 - Detector context
 - ML pipelines
 - Attacks and datasets
- Discussion
 - Research gaps & takeaways
- Summary, Conclusions and Future Work

- [2] Power-Based Non-Intrusive Condition Monitoring for Terminal Device in Smart Grid. Zhang et al. Sensors'20
- [3] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. Wei et al. HOST'19
- [4] Detecting Energy-Greedy Anomalies and Mobile Malware Variants. Kim et al. Mobisys'08
- [5] Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. Bridges et al. TrustCom/BigDataSE'18

- [1] Wattsupdoc: Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. Clark et al . HealthTec'13
- [2] Power-Based Non-Intrusive Condition Monitoring for Terminal Device in Smart Grid. Zhang et al. Sensors'20
- [3] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. Wei et al. HOST'19
- [4] Detecting Energy-Greedy Anomalies and Mobile Malware Variants. Kim et al. Mobisys'08
- [5] Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. Bridges et al. TrustCom/BigDataSE'18

- [1] Wattsupdoc: Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. Clark et al . HealthTec'13
- [2] Power-Based Non-Intrusive Condition Monitoring for Terminal Device in Smart Grid. Zhang et al. Sensors'20
- [3] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. Wei et al. HOST'19
- [4] Detecting Energy-Greedy Anomalies and Mobile Malware Variants. Kim et al. Mobisys'08
- [5] Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. Bridges et al. TrustCom/BigDataSE'18

- [3] Using Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. Wei et al. HOST'19
- [4] Detecting Energy-Greedy Anomalies and Mobile Malware Variants. Kim et al. Mobisys'08
- [5] Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics. Bridges et al. TrustCom/BigDataSE'18

Detector Context Takeaways

• For multi-core systems, must consider all states

- Exponential number of states
- Malware can execute in parallel to benign tasks

Must distinguish all benign from all infected states

- Benign state: only benign tasks executing
- Infected state: at least one malware task

Detector Context Takeaways

• For multi-core systems, must consider all states

- Exponential number of states
- Malware can execute in parallel to benign tasks
- Must distinguish all benign from all infected states
 - Benign state: only benign tasks executing
 - Infected state: at least one malware task

Research Gap: Lack of evaluation on parallel task sets

Experimental Setup

Target Device	Portwell PCOM-C700 Type VII carrier board
	Portwell PCOM-B700G processor module
	8-core Intel Xeon D-1539 embedded class processor
Power Sampling	Spliced 12V CPU power rail, sampled at 2KHz
	Adafruit INA169 analog current sensor
Detector	Deployed on Raspberry Pi4
	Python implementation achieves 27 inferences per second

Experimental Setup

Target Device		Portwell PCOM-C700 Type VII carrier board					
		Portwell PCOM-B700G processor module					
		8-core Intel Xeon D-1539 embedded class processor					
Power Samplin	g	Spliced 12V CPU power rail, sampled at 2KHz					
		Adafruit INA169 analog current sensor					
Detector		Deployed on Raspberry Pi4					
		Python implementation achieves 27 inferences per second					
FeaturesFor regression3For other vector		ssion-based detectors, input window was size 1000 and prediction window					
		[•] ML formulations, each sliding window was transformed into a feature					
Feature v		ector consisted of statistical, and bag-of-words features					
Prior WorksReplicateNon-ense multiclass testsMix of no		ed representative works for various ML formulations					
		emble formulations include: one-class classification, binary classification, s classification, ensemble of one-class classifiers, regression, statistical					
		on-deep and deep methods evaluated					
	[Bridges' Wei'19]	[Bridges'18, Caviglione'15, Dixon'14, Jiminez'19, Liu'09, Luckett'18, Wang'18, Wei'19]					
Benchmarks	Benign a	applications representing drone tasks; SHA-3, face detection, ous drone path-finding					
	3 Microa	rchitectural attacks; Meltdown, Spectre, and L1 Cache covert-channel					

Detector Context Evaluation

Characterize operating range

- 3 applications
- 8 benign states
- 64 comparisons

Prior work underperforms

- Perform poorly in parallel settings
- Suffer even in single-core context

Detector ML Pipelines

Detector ML Pipelines

Detector ML Pipelines

Detector ML Pipelines Takeaways

- Train on malware with assumption that it is representative
 - Binary or multi-class classification
- Regression error as proxy for maliciousness
 - Time series forecasting
- Classification confidence as proxy for maliciousness
 - Multi-class classification

Detector ML Pipelines Takeaways

- Train on malware with assumption that it is representative
 - Binary or multi-class classification
- Regression error as proxy for maliciousness
 - Time series forecasting
- Classification confidence as proxy for maliciousness
 - Multi-class classification

Research Gap: Inappropriate utilization of ML formulations

Proposed State-Based One-Class Ensemble

State awareness

- Any unique combination of executing tasks presents an operating state
- One-class classifier for each state

Proposed State-Based One-Class Ensemble

- Scaling to parallel task sets
 - With more tasks, add more one-class pipelines
 - Combine one-class detection results (max/or)

Proposed State-Based One-Class Ensemble

- Scaling to parallel task sets
 - With more tasks, add more one-class pipelines
 - Combine one-class detection results (max/or)

Detector ML Pipeline Evaluation

- Ensemble outperforms prior work
 - Including prior single-task ensembles
- Ensemble still has limitations
 - NOP insert, low-power, power-mimicry
 - Noise
 - Power cannot detect everything

Attacks and Datasets

• MITRE ATT&CK matrix

						Stac	e						
Reconnaissance	Resource Development 8 techniques	Initial Access	Execution 14 techniques	Persistence 20 techniques	Privilege Escalation 14 techniques	Defense Evasion 43 techniques	Credential Access 17 techniques	Discovery 32 techniques	Lateral Movement 9 techniques	Collection	Command and Control 18 techniques	Exfiltration 9 techniques	Impact 14 techniques
Active Scanning (3)	Acquire Access	Content Injection	Cloud Administration Command	II Account Manipulation (6)	Abuse Elevation Control	Abuse Elevation	Hold Adversary-in-	Account Discovery (4)	Exploitation of Remote Services	Hadversary-in-the-Middle (3)	Application ILayer	Hattomated Exfiltration (1)	Account Access Removal
Information (4)	Infrastructure (8)	Compromise	Command and II Scripting	BITS Jobs	Access Token	Access Token	II Brute Force (4)	Application Window	Internal Spearphishing	Archive II Collected	Communication	Data Transfer Size Limits	Data Destruction
Gather Victim II Identity Information (2)	Compromise Accounts (3)	Exploit Public- Facing Application	Interpreter (10)	Boot or Logon II Autostart Execution (14)	Manipulation (5)	Manipulation (5) BITS Jobs	Credentials II from Password Stores (6)	Discovery Browser	Lateral Tool Transfer	Data ₍₃₎ Audio Capture	Through Removable Media	Exfiltration Over	Data Encrypted for Impact
Gather Victim	Compromise Infrastructure ₍₈₎	External Remote Services	Administration Command	Boot or Logon	Manipulation (6)	Build Image on Host	Exploitation for	Information Discovery	Remote Service	Automated	Content Injection	Alternative Protocol (3)	" Data Manipulation ₍₃₎
Information (6)	Develop Capabilities ₍₄₎	Hardware Additions	Deploy Container	Scripts (5)	Autostart Execution (14)	Debugger Evasion	Forced	Cloud Infrastructure	Hijacking (2)	Browser Session	Encoding (2)	Exfiltration Over C2 Channel	II Defacement (2)
Gather Victim Org	Establish	II Phishing (4)	Exploitation for Client Execution	Browser Extensions	Boot or Logon	Deobfuscate/ Decode Files or Information	Authentication	Discovery Cloud Service	Remote Services (8)	Hijacking Clipboard Data	Data Obfuscation ₍₃₎	Exfiltration	II Disk Wipe (2)
Phishing for Information (4)	Obtain	Replication Through	Inter-Process Communication (3)	Compromise Host Software Binary	Scripts (5)	Deploy Container	Credentials (2)	Dashboard	Replication Through	Data from Cloud	Dynamic Resolution (3)	Network Medium (1)	of Service (4)
Search Closed	Capabilities (7) Stage	Removable Media	Native API	Create	Il System Process (5)	Direct Volume Access	"Capture ₍₄₎	Cloud Service Discovery	Removable Media Software	Storage Data from	Encrypted Channel (2)	Exfiltration	Financial Theft Firmware
Search Open	Capabilities (6)	Compromise (3)	Scheduled Task/ Job ₍₅₎	Create or Modify	Domain or	Domain or Tenant	Modify II Authentication	Cloud Storage Object Discovery	Deployment Tools	II Configuration Repository (2)	Fallback Channels	Medium (1)	Corruption
Databases (5)		Relationship	Serverless Execution	Process (5)	Modification (2)	Modification (2)	Multi-Factor	Container and Resource	Content	Data from Information	Hide Infrastructure	II Over Web Service (4)	Recovery
Search Open II Websites/		" Valid Accounts (4)	Shared Modules	II Event Triggered Execution (16)	Escape to Host	Execution Guardrails (1)	Authentication Interception	Discovery	Use Alternate II Authentication	Repositories (3)	Ingress Tool Transfer	Scheduled	Network Denial of Service (2)
Search Victim-Owned			Tools	External Remote Services	Execution (16)	Exploitation for Defense Evasion	Multi-Factor Authentication	Debugger Evasion Device Driver	Material (4)	System	Multi-Stage Channels	Transfer Data to	Resource Hijacking
Websites			II System Services (2)	Hijack Execution	Exploitation for Privilege Escalation	File and Directory	Request	Discovery		Data from Network	Non-Application	Cloud Account	Service Stop

Attacks and Datasets

- Heavy emphasis on execution or impact stage
 - Easiest to detect
- Proprietary experimental setup
 - Reproducibility

Stage	Instance/Family	Papers
Initial Access	Replay Attack	[16]
Discovery/	Potnot	[20]
Development	Bothet	[30]
Execution	Code Modification	[2, 16, 42]
	Control Flow Hijack	[30, 33]
	Cause Spam	[11, 13]
	Virus	[22]
	Microarchitecture Attacks	[39, 43]
	Evasive μ -Arch Attacks	[39]
	Covert-Channels	[9, 39]
Persistence/	Pootlrit	[8, 13, 42],
Defence Evasion	ROOTKIT	[12, 22, 31]
	Backdoor	[22]
Lateral Movement	Worm	[22, 24, 29]
Collection/		
Exfiltration/	DDOS	[16]
Impact		
	Ransomware	[18, 22]
	Spyware	[11, 29]
	Battery Depletion/	[6 24]
	Electrical Theft	[0, 24]
	Data Deletion	[18]
Other	Fabricated Virus	[3 20]

stage

Attacks and Datasets

- Heavy emphasis on execution or impact stage
 - Easiest to detect
- Proprietary experimental setup
 - Reproducibility

	Instance/Family	Papers
Initial Access	Replay Attack	[16]
Discovery/	Detret	[00]
Resource	Botnet	[38]
Development		
Execution	Code Modification	[2, 16, 42]
	Control Flow Hijack	[30, 33]
	Cause Spam	[11, 13]
	Virus	[22]
	Microarchitecture Attacks	[39, 43]
	Evasive μ -Arch Attacks	[39]
	Covert-Channels	[9, 39]
		[0, 10, 10]
Defence Evasion	Rootkit	[12, 22, 31]
	Backdoor	[22]
Lateral	Worm	[22, 24, 20]
Movement	WOIIII	[22, 24, 29]
Movement Collection/	Worm	[22, 24, 29]
Movement Collection/ Exfiltration/	DDOS	[22, 24, 29]
Movement Collection/ Exfiltration/ Impact	DDOS	[16]
Movement Collection/ Exfiltration/ Impact	DDOS Ransomware	[22, 24, 29] [16]
Movement Collection/ Exfiltration/ Impact	DDOS Ransomware Spyware	[16] [18, 22] [11, 29]
Movement Collection/ Exfiltration/ Impact	DDOS Ransomware Spyware Battery Depletion/	[16] [18, 22] [11, 29]
Movement Collection/ Exfiltration/ Impact	DDOS Ransomware Spyware Battery Depletion/ Electrical Theft	[16] [18, 22] [11, 29] [6, 24]
Movement Collection/ Exfiltration/ Impact	DDOS Ransomware Spyware Battery Depletion/ Electrical Theft Data Deletion	[16] [18, 22] [11, 29] [6, 24] [18]

Stage

Attack and Dataset Evaluation

Evaluate against other attack stages

- Initial access, discovery, lateral movement
- Cannot expect reliable detections
- Operating range of detectors
 - Need to look at worst-case

Attacks and Datasets Takeaways

- Most focus on easy-to-detect stages of MITRE matrix
 - Exploitation and impact

- No established public datasets
 - No released power traces

Attacks and Datasets Takeaways

- Most focus on easy-to-detect stages of MITRE matrix
 - Exploitation and impact

- No established public datasets
 - No released power traces

https://github.com/SLAM-Lab/PMD-Dataset

Research Gap: Lack of comprehensive public datasets

Discussion

Lack of evaluation on parallel task sets

- Multi-core poses new challenges
- Must evaluate each benign and infected state

Inappropriate utilization of ML tools

- Detection significantly hinges on formulation
- Preprocessing is crucial
- Lack of rigorous public datasets
 - Understanding detector limits is more important than showing successes

Deployment Suggestions

- Limit number of benign tasks
- Worst case can be much worse than average
- Deep model is not a crutch for missing domain expertise
- Detector not tested against software-exploiting attacks

Summary, Conclusions and Future Work

- Systemization of power side-channel based malware detection
 - Detector context, ML pipelines, attacks & datasets
- Identify and address research gaps
 - Multi-task multi-core evaluation
 - Proposed state-based ensemble detector
 - Public release of dataset

https://github.com/SLAM-Lab/PMD-Dataset

Summary, Conclusions and Future Work

- Systemization of power side-channel based malware detection
 - Detector context, ML pipelines, attacks & datasets
- Identify and address research gaps
 - Multi-task multi-core evaluation
 - Proposed state-based ensemble detector
 - Public release of dataset

https://github.com/SLAM-Lab/PMD-Dataset

• Future work

- Further characterization of operating range
- Alternative approaches for more complex detection scenarios
 - Heterogeneous hardware platforms, software-based attacks, power-mimicking malware

Thank you!

alexander.cathis@utexas.edu

https://github.com/SLAM-Lab/PMD-Dataset